منابع مشابه
Lipschitz Spaces on Compact Manifolds
Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملcompact composition operators on certain analytic lipschitz spaces
we investigate compact composition operators on ceratin lipschitzspaces of analytic functions on the closed unit disc of the plane.our approach also leads to some results about compositionoperators on zygmund type spaces.
متن کاملOn Locally Lipschitz Locally Compact Transformation Groups of Manifolds
In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds ...
متن کاملBesov Spaces and Frames on Compact Manifolds
We show that one can characterize the Besov spaces on a smooth compact oriented Riemannian manifold, for the full range of indices, through a knowledge of the size of frame coefficients, using the smooth, nearly tight frames we have constructed in [8].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1971
ISSN: 0022-1236
DOI: 10.1016/0022-1236(71)90034-6